4.5 Article

Postsynaptic Adenosine A2A Receptors Modulate Intrinsic Excitability of Pyramidal Cells in the Rat Basolateral Amygdala

出版社

OXFORD UNIV PRESS
DOI: 10.1093/ijnp/pyv017

关键词

basolateral amygdala; intrinsic excitability; adenosine; A(2A); AHP

资金

  1. NIAAA [F31 AA022046, PO1 AA021099, R37AA017531, R37AA010422]

向作者/读者索取更多资源

Background: The basolateral amygdala plays a critical role in the etiology of anxiety disorders and addiction. Pyramidal neurons, the primary output cells of this region, display increased firing following exposure to stressors, and it is thought that this increase in excitability contributes to stress responsivity and the expression of anxiety-like behaviors. However, much remains unknown about the underlying mechanisms that regulate the intrinsic excitability of basolateral amygdala pyramidal neurons. Methods: Ex vivo gramicidin perforated patch recordings were conducted in current clamp mode where hyper- and depolarizing current steps were applied to basolateral amygdala pyramidal neurons to assess the effects of adenosine A(2A) receptor modulation on intrinsic excitability. Results: Activation of adenosine A(2A) receptors with the selective A(2A) receptor agonist CGS-21680 significantly increased the firing rate of basolateral amygdala pyramidal neurons in rat amygdala brain slices, likely via inhibition of the slow afterhyperpolarization potential. Both of these A(2A) receptor-mediated effects were blocked by preapplication of a selective A(2A) receptor antagonist (ZM-241385) or by intra-pipette infusion of a protein kinase A inhibitor, suggesting a postsynaptic locus of A(2A) receptors on basolateral amygdala pyramidal neurons. Interestingly, bath application of the A(2A) receptor antagonist alone significantly attenuated basolateral amygdala pyramidal cell firing, consistent with a role for tonic adenosine in the regulation of the intrinsic excitability of these neurons. Conclusions: Collectively, these data suggest that adenosine, via activation of A(2A) receptors, may directly facilitate basolateral amygdala pyramidal cell output, providing a possible balance for the recently described inhibitory effects of adenosine A(1) receptor activation on glutamatergic excitation of basolateral amygdala pyramidal cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据