4.8 Article

Superoxide mediated reduction of organically complexed Iron(III): Comparison of non-dissociative and dissociative reduction pathways

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 41, 期 9, 页码 3205-3212

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es0617892

关键词

-

向作者/读者索取更多资源

We have investigated the mechanism of reduction of organically complexed iron(III) in the presence of superoxide, the one-electron reduced form of dioxygen that is produced in natural waters by thermal, photochemical, and biological pathways. Experimental results show that reduction of organically complexed iron(III) by superoxide may occur by either (or, in some instances, both) reaction of superoxide with inorganic iron(III) after its dissociation from the complex (dissociative reduction) or by direct reaction of superoxide with the complex (non-dissociative reduction). In the presence of low concentrations of ligands such as citrate and sulfosalicylate that bind iron(III) relatively weakly and result in complexes with high dissociation rate constants (k(d) > 1 x 10(-4) s(-1)), a dissociative reduction pathway dominates. However, in the presence of strong ligands or high concentrations of weak ligands, only non-dissociative reduction of complexed iron(III) occurs. The relative contribution of each pathway has major implications for the lability and hence potential bioavailablity of iron in natural waters. The simple kinetic model developed here can be used to correctly predict the superoxide-mediated formation rates of iron(II) in natural systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据