4.6 Article

Sensor fault reconstruction and sensor compensation for a class of nonlinear state-space systems via a descriptor system approach

期刊

IET CONTROL THEORY AND APPLICATIONS
卷 1, 期 3, 页码 578-585

出版社

INST ENGINEERING TECHNOLOGY-IET
DOI: 10.1049/iet-cta:20050509

关键词

-

向作者/读者索取更多资源

A descriptor system approach is introduced to investigate sensor fault reconstruction and sensor compensation for a class of nonlinear state-space systems with Lipschitz constraints. Letting the sensor fault term be an auxiliary state vector, an augmented descriptor system is constructed. Using the linear matrix inequality technique, a state-space nonlinear estimator is designed for the augmented descriptor plant. Accurate asymptotic estimates of the original system state vector and the sensor fault term are thus obtained readily. By subtracting the estimated sensor fault term from the measurement output, sensor compensation is performed, allowing the existing controller for the original plant (without sensor faults) to continue to function normally even when a sensor fault occurs. Robust sensor fault reconstruction and sensor compensation are also discussed in detail for systems with simultaneous sensor faults, input disturbances and output noises. Finally, numerical examples and simulations are given to illustrate the design procedures and demonstrate the efficiency of the approaches. The sensor fault considered may be in any form, and may even be unbounded. As a result, the present work possesses a wide scope of applicability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据