4.7 Article

Seasonal shifts in the North American monsoon

期刊

JOURNAL OF CLIMATE
卷 20, 期 9, 页码 1923-1935

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI4091.1

关键词

-

向作者/读者索取更多资源

Analysis is performed on the spatiotemporal attributes of North American monsoon system (NAMS) rainfall in the southwestern United States. Trends in the timing and amount of monsoon rainfall for the period 1948-2004 are examined. The timing of the monsoon cycle is tracked by identifying the Julian day when the 10th, 25th, 50th, 75th, and 90th percentiles of the seasonal rainfall total have accumulated. Trends are assessed using the robust Spearman rank correlation analysis and the Kendall-Theil slope estimator. Principal component analysis is used to extract the dominant spatial patterns and these are correlated with antecedent land-ocean-atmosphere variables. Results show a significant delay in the beginning, peak, and closing stages of the monsoon in recent decades. The results also show a decrease in rainfall during July and a corresponding increase in rainfall during August and September. Relating these attributes of the summer rainfall to antecedent winter-spring land and ocean conditions leads to the proposal of the following hypothesis: warmer tropical Pacific sea surface temperatures (SSTs) and cooler northern Pacific SSTs in the antecedent winter-spring leads to wetter than normal conditions over the desert Southwest (and drier than normal conditions over the Pacific Northwest). This enhanced antecedent wetness delays the seasonal heating of the North American continent that is necessary to establish the monsoonal land-ocean temperature gradient. The delay in seasonal warming in turn delays the monsoon initiation, thus reducing rainfall during the typical early monsoon period (July) and increasing rainfall during the later months of the monsoon season (August and September). While the rainfall during the early monsoon appears to be most modulated by antecedent winter-spring Pacific SST patterns, the rainfall in the later part of the monsoon seems to be driven largely by the near-term SST conditions surrounding the monsoon region along the coast of California and the Gulf of California. The role of antecedent land and ocean conditions in modulating the following summer monsoon appears to be quite significant. This enhances the prospects for long-lead forecasts of monsoon rainfall over the southwestern United States, which could have significant implications for water resources planning and management in this water-scarce region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据