4.7 Article

Synthesis and stabilization of Prussian blue nanoparticles and application for sensors

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 309, 期 1, 页码 176-182

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2007.02.022

关键词

Prussian blue; nanoparticles; stabilization by polymers; sensors

向作者/读者索取更多资源

Prussian blue (PB) nanoparticles were synthesized by two methods from FeCl2 and K3Fe(CN)(6) and from FeCl3 and K3Fe(CN)(6) based on the method published by Fiorito et al., and stabilized by different polymers like polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), polyallylamine hydrochloride (PAH), polydiallyl-dimethyldiammonium chloride (PDDA) and polystyrene sulfonate (PSS). The effect of the monomer/Fe3+ ratio was studied regarding the average particle size and zeta-potential. The forming PB structure was checked by X-ray diffraction. The stabilization was successful for every applied polymer, but the average particle size significantly differs. Particle size distributions were determined by Malvern type nanosizer equipment and by transmission electron microscope (TEM) and zeta potential values were determined for the obtained stabile samples. The results revealed that by using FeCl2 and K3Fe(CN)(6) for PB preparation particles with narrow size distribution and average diameter of 1.7 nm occurred but stabilization was necessary. By the other method the dispersion was stabile with 182 nm particles but the particle size exponentially decreased to 18 nm with increasing PVP concentration. Ultrathin nanofilms were prepared on glass support by the alternating layer-by-layer (LbL) method from PB particles and PAR The morphology of the prepared films was investigated also by AFM. The films were immobilized on interdigitated microsensor electrodes (IME) and tested in sensing hydrogen peroxide and different acids like acetic acid, hydrochloric acid vapors. (c) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据