4.6 Article

Theoretical study of the thermal behavior of free and alumina-supported Fe-C nanoparticles

期刊

PHYSICAL REVIEW B
卷 75, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.205426

关键词

-

向作者/读者索取更多资源

The thermal behavior of free and alumina-supported iron-carbon nanoparticles is investigated via molecular-dynamics simulations, in which the effect of the substrate is treated with a simple Morse potential fitted to ab initio data. We observe that the presence of the substrate raises the melting temperature of medium and large Fe1-xCx nanoparticles (x=0-0.16, N=80-1000, nonmagic numbers) by 40-60 K; it also plays an important role in defining the ground state of smaller Fe nanoparticles (N=50-80). The main focus of our study is the investigation of Fe-C phase diagrams as a function of the nanoparticle size. We find that as the cluster size decreases in the 1.1-1.6-nm-diameter range, the eutectic point shifts significantly not only toward lower temperatures, as expected from the Gibbs-Thomson law, but also toward lower concentrations of C. The strong dependence of the maximum C solubility on the Fe-C cluster size may have important implications for the catalytic growth of carbon nanotubes by chemical-vapor deposition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据