4.7 Article

Mechanisms by which moisture generates cocrystals

期刊

MOLECULAR PHARMACEUTICS
卷 4, 期 3, 页码 360-372

出版社

AMER CHEMICAL SOC
DOI: 10.1021/mp0700099

关键词

cocrystallization; molecular complex; cocrystal stability; deliquescence; phase transformation; hygroscopicity

向作者/读者索取更多资源

The purpose of this study is to determine the mechanisms by which moisture can generate cocrystals when solid particles of cocrystal reactants are exposed to deliquescent conditions (when moisture sorption forms an aqueous solution). It is based on the hypothesis that cocrystallization behavior during water uptake can be derived from solution chemistry using models that describe cocrystal solubility and reaction crystallization of molecular complexes. Cocrystal systems were selected with active pharmaceutical ingredients (APIs) that form hydrates and include carbamazepine, caffeine, and theophylline. Moisture uptake and crystallization behavior were studied by gravimetric vapor sorption, X-ray powder diffraction, and on-line Raman spectroscopy. Results indicate that moisture uptake generates cocrystals of carbamazepine-nicotinamide, carbamazepine-saccharin, and caffeine or theophylline with dicarboxylic acid ligands (oxalic acid, maleic acid, glutaric acid, and malonic acid) when solid mixtures with cocrystal reactants deliquesce. Microscopy studies revealed that the transformation mechanism to cocrystal involves (1) moisture uptake, (2) dissolution of reactants, and (3) cocrystal nucleation and growth. Studies of solid blends of reactants in a macro scale show that the rate and extent of cocrystal formation are a function of relative humidity, moisture uptake, deliquescent material, and dissolution rates of reactants. It is shown that the interplay between moisture uptake and dissolution determines the liquid phase composition, supersaturation, and cocrystal formation rates. Differences in the behavior of deliquescent additives (sucrose and fructose) are associated with moisture uptake and composition of the deliquesced solution. Our results show that deliquescence can transform API to cocrystal or reverse the reaction given the right conditions. Key indicators of cocrystal formation and stability are (1) moisture uptake, (2) cocrystal aqueous solubility, (3) solubility and dissolution of cocrystal reactants, and (4) transition concentration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据