4.5 Article

Simulation of robustness against lesions of cortical networks

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 25, 期 10, 页码 3185-3192

出版社

WILEY
DOI: 10.1111/j.1460-9568.2007.05574.x

关键词

cat; macaque monkey; resilience; scale-free networks; small-world networks

向作者/读者索取更多资源

Structure entails function, and thus a structural description of the brain will help to understand its function and may provide insights into many properties of brain systems, from their robustness and recovery from damage to their dynamics and even their evolution. Advances in the analysis of complex networks provide useful new approaches to understanding structural and functional properties of brain networks. Structural properties of networks recently described allow their characterization as small-world, random (exponential) and scale-free. They complement the set of other properties that have been explored in the context of brain connectivity, such as topology, hodology, clustering and hierarchical organization. Here we apply new network analysis methods to cortical interareal connectivity networks for the cat and macaque brains. We compare these corticocortical fibre networks to benchmark rewired, small-world, scale-free and random networks using two analysis strategies, in which we measure the effects of the removal of nodes and connections on the structural properties of the cortical networks. The structural decay of the brain networks is in most respects similar to that of scale-free networks. The results implicate highly connected hub-nodes and bottleneck connections as a structural basis for some of the conditional robustness of brain systems. This informs the understanding of the development of connectivity of the brain networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据