4.2 Article

Production of recombinant human α1-microglobulin and mutant forms involved in chromophore formation

期刊

PROTEIN EXPRESSION AND PURIFICATION
卷 53, 期 1, 页码 145-152

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.pep.2006.10.023

关键词

alpha 1-microglobulin; recombinant protein; immobilised metal-ion affinity chromatography; circular dichroism; radioimmunoassay

向作者/读者索取更多资源

alpha-Microglobulin, a 26 kDa lipocalin present in plasma and tissues, carries a set of unknown chromophores, bound to C34, K92, KI 18 and KI 30, which cause its charge and size heterogeneity. In man, the protein is found in two forms, full length and lacking the C-terminal tetrapeptide LIPR (t-alpha(1)-microglobulin), both which are heme-binding and the latter with heme-degrading properties. We report cloning and overexpression of full length alpha(1)-microglobulin (wt protein), t-alpha(1)-microglobulin (wtz LIPR) and the mutants C34S, K(92,118,130)T and C34S/K(92,118,130)T, the latter subsequently abbreviated as K(3)T and C34S/K(3)T, in Escherichia coli. After purification and refolding from inclusion bodies, all proteins were correctly folded as determined by far-UV circular dichroism and radioimmunoassay. As revealed by gel filtration, recombinant alpha(1)-microglobulins had lower tendencies to form dimers than human plasma or urine analogues. All alpha(1)-microglobulin forms displayed higher amounts of the chromophore than bovine serum albumin but significantly lower than the human urine or plasma counterparts. Differences in the absorbance and fluorescence profiles are consistent with a model where the chromophore is formed by a series of reactions with heme or other chromophore precursors and where C34 is essential for binding of the ligand, K92, KI 18 and K130 are involved in transformation into the chromophore and LIPR inhibits the latter reaction. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据