4.6 Article

First-principles calculation of mechanical properties of Si(001) nanowires and comparison to nanomechanical theory

期刊

PHYSICAL REVIEW B
卷 75, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.195328

关键词

-

向作者/读者索取更多资源

We report the results of first-principles density functional theory calculations of the Young's modulus and other mechanical properties of hydrogen-passivated Si < 001 > nanowires. The nanowires are taken to have predominantly {100} surfaces, with small {110} facets according to the Wulff shape. The Young's modulus, the equilibrium length, and the constrained residual stress of a series of prismatic beams of differing sizes are found to have size dependences that scale like the surface area to volume ratio for all but the smallest beam. The results are compared with a continuum model and the results of classical atomistic calculations based on an empirical potential. We attribute the size dependence to specific physical structures and interactions. In particular, the hydrogen interactions on the surface and the charge density variations within the beam are quantified and used both to parametrize the continuum model and to account for the discrepancies between the two models and the first-principles results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据