4.3 Article

Taking phylogenetics beyond pattern analysis: Can models of genome dynamics guide predictions about homoplasy in morphological and behavioral data sets?

期刊

JOURNAL OF HUMAN EVOLUTION
卷 52, 期 5, 页码 522-535

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jhevol.2006.11.015

关键词

molecules; morphology; behavior; organization theory of speciation; phylogeny reconstruction

向作者/读者索取更多资源

Despite the considerable amount of interest in phylogeny reconstruction, patterns of homoplasy in morphological and behavioral data have received only limited attention to date, whereas the patterns of homoplasy in molecular data are relatively well understood. First, because the number of alternative molecular character states is strictly limited (particularly for nucleotide sequence data), higher rates of substitution generate higher levels of homoplasy. Second, depending on the relative proportions of constrained and unconstrained sites, each molecular data set has a time frame of applicability outside of which resolution becomes ambiguous. There is good evidence to suggest that numbers of alternative character states for morphological and even behavioral data may be similarly limited and that higher rates of evolution are often linked to higher rates of homoplasy. Like molecular data sets, morphological and behavioral data sets contain rapidly evolving characters as well as more conservative elements. Morphologies and behaviors related to sexual recognition and reproduction show low levels of intraspecific variation, but high levels of lability between species, making them crucial for species identification but often poor as markers of relationship at greater time depths. The organization theory of speciation derived by Carson is a model based on genome dynamics, and it predicts exactly this window of applicability for characters related to sexual reproduction. Nonsexual characters related to environmental adaptation should be applicable at greater phylogenetic depths. A better understanding of patterns of homoplasy enables a more sophisticated approach to the assessment of the relative reliabilities of alternative tree topologies. (c) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据