4.5 Article

Systematic capsule gene disruption reveals the central role of galactose metabolism on Cryptococcus neoformans virulence

期刊

MOLECULAR MICROBIOLOGY
卷 64, 期 3, 页码 771-781

出版社

WILEY
DOI: 10.1111/j.1365-2958.2007.05695.x

关键词

-

向作者/读者索取更多资源

The polysaccharidic capsule is the main virulence factor of Cryptococcus neoformans. It primarily comprised of two polysaccharides: glucuronoxylomannan (GXM, 88% of the capsule mass) and galactoxylomannan (GalXM, 7% of the capsule mass). We constructed a large collection of mutant strains in which genes potentially involved in capsule biosynthesis were deleted. We used a new post-genomic approach to study the virulence of the strains. Primers specific for unique tags associated with the disruption cassette were used in a real-time PCR virulence assay to measure the fungal burden of each strain in different organs of mice in multi-infection experiments. With this very sensitive assay, we identified a putative UDP-glucose epimerase (Uge1p) and a putative UDP-galactose transporter (Ugt1p) essential for C. neoformans virulence. The uge1 Delta and ugt1 Delta strains are temperature sensitive and do not produce GalXM but synthesize a larger capsule. These mutant strains (GalXM negative, GXM positive) are not able to colonize the brain even at the first day of infection whereas GXM-negative strains (GalXM positive) can still colonize the brain, although less efficiently than the wild-type strain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据