4.7 Article

Using recurrent neural networks to detect changes in autocorrelated processes for quality monitoring

期刊

COMPUTERS & INDUSTRIAL ENGINEERING
卷 52, 期 4, 页码 502-520

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cie.2007.03.003

关键词

manufacturing; quality monitoring; ARMA models; recurrent neural network

向作者/读者索取更多资源

With the growing of automation in manufacturing, process quality characteristics are being measured at higher rates and data are more likely to be autocorrelated. A widely used approach for statistical process monitoring in the case of autocorrelated data is the residual chart. This chart requires that a suitable model has been identified for the time series of process observations before residuals can be obtained. In this work, a new neural-based procedure, which is alleviated from the need for building a time series model, is introduced for quality control in the case of serially correlated data. In particular, the Elman's recurrent neural network is proposed for manufacturing process quality control. Performance comparisons between the neural-based algorithm and several control charts are also presented in the paper in order to validate the approach. Different magnitudes of the process mean shift, under the presence of various levels of autocorrelation, are considered. The simulation results indicate that the neural-based procedure may perform better than other control charting schemes in several instances for both small and large shifts. Given the simplicity of the proposed neural network and its adaptability, this approach is proved from simulation experiments to be a feasible alternative for quality monitoring in the case of autocorrelated process data. (c) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据