4.8 Article

A kinetic study of multi-walled carbon nanotube synthesis by catalytic chemical vapor deposition using a Fe-Co/Al2O3 catalyst

期刊

CARBON
卷 45, 期 6, 页码 1167-1175

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2007.02.021

关键词

-

向作者/读者索取更多资源

A kinetic study was performed to describe the initial specific rate of multi-walled carbon nanotube synthesis by catalytic chemical vapor deposition (CCVD) on a bimetallic cobalt-iron catalyst at high temperature using ethylene decomposition to solid carbon and gaseous hydrogen. The study uses a mass spectrometer that allows reaction rate to be inferred from the exhaust gas composition measurements. The aim is to obtain a better understanding of the elementary steps involved in the production of carbon nanotubes so as to derive phenomenological kinetic models in agreement with experimental data. The best models assume the elimination of the first hydrogen atom from adsorbed ethylene as rate determining step and involve a hydrogen adsorption weak enough to be neglected. It was proved that hydrogen partial pressure has no influence on initial reaction rate of carbon nanotube synthesis with the catalyst used for this study. Activation energy and ethylene adsorption enthalpy were found to be equal to around 130 and - 130 kJ mol(-1), respectively. (C) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据