4.8 Article

Arabidopsis peroxisomal malate dehydrogenase functions in β-oxidation but not in the glyoxylate cycle

期刊

PLANT JOURNAL
卷 50, 期 3, 页码 381-390

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1365-313X.2007.03055.x

关键词

peroxisome; malate dehydrogenase; beta-oxidation; glyoxylate cycle; fatty acids; Arabidopsis

向作者/读者索取更多资源

The aim was to determine the function of peroxisomal NAD(+)-malate dehydrogenase (PMDH) in fatty acid beta-oxidation and the glyoxylate cycle in Arabidopsis. Seeds in which both PMDH genes are disrupted by T-DNA insertions germinate, but seedling establishment is dependent on exogenous sugar. Mutant seedlings mobilize their triacylglycerol very slowly and growth is insensitive to 2,4-dichlorophenoxybutyric acid. Thus mutant seedlings are severely impaired in beta-oxidation, even though microarray analysis shows that beta-oxidation genes are expressed normally. The mutant phenotype was complemented by expression of a cDNA encoding PMDH with either its native peroxisome targeting signal-2 (PTS2) targeting sequence or a heterologous PTS1 sequence. In contrast to the block in beta-oxidation in mutant seedlings, [C-14]acetate is readily metabolized into sugars and organic acids, thereby demonstrating normal activity of the glyoxylate cycle. We conclude that PMDH serves to reoxidize NADH produced from fatty acid beta-oxidation and does not participate directly in the glyoxylate cycle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据