4.6 Article

Landauer conductance and twisted boundary conditions for Dirac fermions in two space dimensions

期刊

PHYSICAL REVIEW B
卷 75, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.205344

关键词

-

向作者/读者索取更多资源

We apply the generating function technique developed by Nazarov to the computation of the density of transmission eigenvalues for a two-dimensional free massless Dirac fermion, which, e.g., underlies theoretical descriptions of graphene. By modeling ideal leads attached to the sample as a conformal invariant boundary condition, we relate the generating function for the density of transmission eigenvalues to the twisted chiral partition functions of fermionic (c=1) and bosonic (c=-1) conformal field theories. We also discuss the scaling behavior of the ac Kubo conductivity and compare its different dc limits with results obtained from the Landauer conductance. Finally, we show that the disorder-averaged Einstein conductivity is an analytic function of the disorder strength, with vanishing first-order correction, for a tight-binding model on the honeycomb lattice with weak real-valued and nearest-neighbor random hopping.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据