4.8 Article Proceedings Paper

Microelastic mapping of living endothelial cells exposed to shear stress in relation to three-dimensional distribution of actin filaments

期刊

ACTA BIOMATERIALIA
卷 3, 期 3, 页码 311-319

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2006.07.009

关键词

actin filament; atomic force microscope; elastic property; endothelial cell; shear stress

向作者/读者索取更多资源

The surface topography and local elastic moduli of endothelial cells exposed to shear stress were measured using atomic force microscopy. Bovine aortic endothelial cells were exposed to shear stress of 2 Pa for 6, 12 or 24 h. In addition, a confocal laser-scanning microscope used in conjunction with the atomic force microscope was used to observe the actin filament structure of these endothelial cells to elucidate the relationship between mechanical properties and cytoskeletal structure. The elastic modulus, calculated using the Hertz model, was measured at 50 x 50 points at I put intervals within 40 min. For endothelial cells sheared for 6 h and 12 It, the elastic modulus at the upstream region was found to be higher than that at the downstream region. For endothelial cells sheared for 24 h, the elastic modulus at both the upstream and downstream regions increased. Fluorescent images showed thick, elongated actin filaments oriented in the direction of flow at the ventral surface of the cells. In the middle plane of the cells, actin filaments developed around the nucleus, while in the upper plane, short, thick actin filaments were observed but thick stress fibers were not present. The high elastic modulus came from the stress fibers. These results indicate that the higher elastic modulus observed in the upstream and downstream regions of sheared endothelial cells is mainly due to the development of stress fibers at the ventral surface and middle plane of the cell. (C) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据