4.5 Article Proceedings Paper

The olfactory pathway of decapod crustaceans- An invertebrate model for life-long neurogenesis

期刊

CHEMICAL SENSES
卷 32, 期 4, 页码 365-384

出版社

OXFORD UNIV PRESS
DOI: 10.1093/chemse/bjm008

关键词

arthropod; decapod crustacean; local interneurons; proliferation; projection neurons

资金

  1. NIDCD NIH HHS [DC02038] Funding Source: Medline

向作者/读者索取更多资源

The first part of this review includes a short description of the cellular and morphological organization of the olfactory pathway of decapod crustaceans, followed by an overview of adult neurogenesis in this pathway focusing on the olfactory lobe (OL), the first synaptic relay in the brain. Adult neurogenesis in the central olfactory pathway has the following characteristics. 1) It is present in all the diverse species of decapod crustaceans so far studied. 2) In all these species, projection neurons (PNs), which have multiglomerular dendritic arborizations, are generated. 3) Neurons are generated by one round of symmetrical cell divisions of a small population of immediate precursor cells that are located in small proliferation zones at the inner margin of the respective soma clusters. 4) The immediate precursor cells in each soma cluster appear to be generated by repeated cell divisions of one or few neuronal stem cells that are located outside of the proliferation zone. 5) These neuronal stem cells are enclosed in a highly structured clump of small glial-like cells, which likely establishes a specific microenvironment and thus can be regarded as a stem cell niche. 6) Diverse internal and external factors, such as presence of olfactory afferents, age, season of the year, and living under constant and deprived conditions modulate the generation and/or survival of new neurons. In the second part of this review, I address the question why in decapod crustaceans adult neurogenesis persists in the visual and olfactory pathways of the brain but is lacking in all other mechanosensory-chemosensory pathways. Due to the indeterminate growth of most adult decapod crustaceans, new sensory neurons of all modalities (olfaction and chemo-, mechano-, and photoreception) are continuously added during adulthood and provide an ever-increasing sensory input to all primary sensory neuropils of the central nervous system. From these facts, I conclude that adult neurogenesis in the brain cannot simply be a mechanism to accommodate increasing sensory input and propose instead that it is causally linked to the specific topographic logic of information processing implemented in the sensory neuropils serving different modalities. For the presumptive odotopic type of information processing in the OL, new multiglomerular PNs allow interconnection of novel combinations of spatially unrelated input channels (glomeruli), whose simultaneous activation by specific odorants is the basis of odor coding. Thus, adult neurogenesis could provide a unique way to increase the resolution of odorant quality coding and allow adaptation of the olfactory system of these long-lived animals to ever-changing odor environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据