4.8 Article

DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models

期刊

CANCER RESEARCH
卷 67, 期 9, 页码 4295-4302

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-06-4442

关键词

-

类别

资金

  1. NCI NIH HHS [P01 CA49062] Funding Source: Medline
  2. NIBIB NIH HHS [P41 EB002033-09] Funding Source: Medline

向作者/读者索取更多资源

The radiation-induced bystander effect; in which irradiated cells can induce genomic instability in unirradiated neighboring cells, has important implications for cancer radiotherapy and diagnostic radiology as well as for human health in general. Although the mechanisms of this effect remain to be elucidated, we reported previously that DNA double-strand breaks (DSBs), directly measured by gamma-H2AX focus formation assay, are induced in bystander cultured cells. To overcome the deficiencies of cultured cell studies, we examined alpha-particle microbeam irradiation-induced bystander effects in human tissue models, which preserve the three-dimensional geometric arrangement and communication of cells present in tissues in vivo. In marked contrast to DNA DSB dynamics in irradiated cells, in which maximal DSB formation is seen 30 min after irradiation, the incidence of DSBs in bystander cells reached a maximum by 12 to 48 h after irradiation, gradually decreasing over the 7-day time course. At the maxima, 40% to 60% of bystander cells were affected, a 4- to 6-fold increase over controls. These increases in bystander DSB formation were followed by increased levels of apoptosis and micronucleus formation, by loss of nuclear DNA methylation, and by an increased fraction of senescent cells. These findings show the involvement of DNA DSBs in tissue bystander responses and support the notion that bystander DNA DSBs are precursors to widespread downstream effects in human tissues. Bystander cells exhibiting postirradiation signs of genomic instability may be more prone than unaffected cells to become cancerous. Thus, this study points to the importance of considering the indirect biological effects of radiation in cancer risk assessment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据