4.6 Article

Apigenin-induced cell cycle arrest is mediated by modulation of MAPK, PI3K-Akt, and loss of cyclin D1 associated retinoblastoma dephosphorylation in human prostate cancer cells

期刊

CELL CYCLE
卷 6, 期 9, 页码 1102-1114

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/cc.6.9.4146

关键词

apigenin; cell cycle; prostate cancer; mitogen-activated protein kinases; phosphatidylinositol 3 ' kinase; Akt/PKB

资金

  1. NCCIH NIH HHS [R01 AT002709] Funding Source: Medline
  2. NCI NIH HHS [R03 CA099049, R03 CA094248, R01 CA108512] Funding Source: Medline

向作者/读者索取更多资源

Apigenin, a dietary plant-flavonoid has shown anti-proliferative and anticancer properties, however the molecular basis of this effect remains to be elucidated. We studied the molecular events of apigenin action in human prostate cancer cells. Treatment of LNCaP and PC-3 cells with apigenin causes G(0)-G(1) phase arrest, decrease in total Rb protein and its phosphorylation at Ser780 and Ser807/811 in dose- and time-dependent fashion. Apigenin treatment caused increased phosphorylation of ERK1/2 and JNK1/2 and this sustained activation resulted in decreased ELK-1 phosphorylation and c-FOS expression thereby inhibiting cell survival. Use of kinase inhibitors induced ERK1/2 phosphorylation, albeit at different levels, and did not contribute to cell cycle arrest in comparison to apigenin treatment. Despite activation of MAPK pathway, apigenin caused a significant decrease in cyclin D1 expression that occurred simultaneously with the loss of Rb phosphorylation and inhibition of cell cycle progression. The reduced expression of cyclin D1 protein correlated with decrease in expression and phosphorylation of p38 and PI3K-Akt, which are regulators of cyclin D1 protein. Interestingly, apigenin caused a marked reduction in cyclin D1, D2 and E and their regulatory partners CDK 2, 4 and 6, operative in G(0)-G(1) phase of the cell cycle. This was accompanied by a loss of RNA polymerase II phosphorylation, suggesting the effectiveness of apigenin in inhibiting transcription of these proteins. This study provides an insight into the molecular mechanism of apigenin in modulating various tyrosine kinases and perturbs cell cycle progression, suggesting its future development and use as anticancer agent in humans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据