4.3 Article

Calpain activation causes a proteasome-dependent increase in protein degradation and inhibits the Akt signalling pathway in rat diaphragm muscle

期刊

EXPERIMENTAL PHYSIOLOGY
卷 92, 期 3, 页码 561-573

出版社

WILEY
DOI: 10.1113/expphysiol.2006.035790

关键词

-

资金

  1. NIA NIH HHS [5T32 AG000029-30] Funding Source: Medline

向作者/读者索取更多资源

The role of the calpain proteases in skeletal muscle atrophy is poorly understood. One goal of these experiments was to clarify whether calpains act upstream of the ubiquitin-proteasome pathway (UPP). Calpain activation may also inhibit the anabolic signalling of Akt, since a molecular chaperone previously shown to mediate Akt activity, heat shock protein 90 (HSP 90), is a calpain substrate. Thus, an additional objective was to determine whether calpain activation affects the Akt signalling pathway. Ex vivo experiments were conducted using isolated rat diaphragm muscle. Calpain activation increased total protein degradation by 65%. Proteasome inhibition prevented this large rise in proteolysis, demonstrating that the proteasome was necessary for calpain-activated protein degradation. In addition, calpain activation increased proteasome-dependent proteolysis by 144%, further supporting the idea of sequential proteolytic pathways. Calpain reduced Akt and mammalian target of rapamycin (mTOR) phosphorylation by 35 and 50%, respectively, and activated glycogen synthase kinase-3 beta (GSK-3 beta) by 40%. Additionally, calpain activation reduced HSP 90 beta and mTOR protein content by 33 and 50%, respectively. These data suggest that calpains play a dual role in protein metabolism by concomitantly activating proteasome-dependent proteolysis and inhibiting the Akt pathway of protein synthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据