4.3 Article

Changes of purinergic control of intestinal motor activity during metamorphosis in the African clawed frog, Xenopus laevis

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00785.2006

关键词

amphibian; adenosine; adenosine 5 '-triphosphate; P2Y11; ontogeny

向作者/读者索取更多资源

Little is known about the purinergic regulation of intestinal motor activity in amphibians. Purinergic control of intestinal motility is subject to changes during development in mammals. The aim of this study was to investigate purinergic control of intestinal smooth muscle in the amphibian Xenopus laevis and explore possible changes in this system during the developmental phase of metamorphosis. Effects of purinergic compounds on mean force and contraction frequency in intestinal circular muscle strips from prometamorphic, metamorphic, and juvenile animals were investigated. Before metamorphosis, low concentrations of ATP reduced motor activity, whereas the effects were reversed at higher concentrations. ATP-induced relaxation was not inhibited by the P2-receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) but was blocked by the ecto-nucleotidase inhibitor 6-N,N-diethyl-D-beta-y-dibromomethylene ATP (ARL67256), indicating that an ATP-derived metabolite mediated the relaxation response at this stage. Adenosine induced relaxation before, during, and after metamorphosis, which was blocked by the A(1)-receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX). The stable ATP-analog adenosine 5'-[-y-thio]-tri phosphate (ATP gamma S) and 2-methylthio-ATP (2-MeSATP) elicited contractions in the circular muscle strips in prometamorphic tadpoles. However, in juvenile froglets, 2-MeSATP caused relaxation, as did ATP gamma S at low concentrations. The P2Y(11)/P2X(1)-receptor antagonist NF157 antagonized the ATP gamma S-induced relaxation. The P2X-preferring agonist alpha-beta-methyleneadenosine 5'-triphosphate (alpha-beta-MeATP) evoked PPADS-sensitive increases in mean force at all stages investigated. This study demonstrates the existence of an adenosine A(1)-like receptor mediating relaxation and a P2X-like receptor mediating contraction in the X. laevis gut before, during, and after metamorphosis, Furthermore, the development of a P2Y(11)-like receptor-mediated relaxation during metamorphosis is shown.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据