4.7 Article

An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers

期刊

THEORETICAL AND APPLIED GENETICS
卷 114, 期 8, 页码 1305-1317

出版社

SPRINGER
DOI: 10.1007/s00122-006-0483-z

关键词

-

向作者/读者索取更多资源

Sequence related amplified polymorphism (SRAP) was used to construct an ultradense genetic recombination map for a doubled haploid (DH) population in B. napus. A total of 1,634 primer combinations including 12 fluorescently labeled primers and 442 unlabeled ones produced 13,551 mapped SRAP markers. All these SRAPs were assembled in 1,055 bins that were placed onto 19 linkage groups. Ten of the nineteen linkage groups were assigned to the A genome and the remaining nine to the C genome on the basis of the differential SRAP PCR amplification in two DH lines of B. rapa and B. oleracea. Furthermore, all 19 linkage groups were assigned to their corresponding N1-N19 groups of B. napus by comparison with 55 SSR markers used to construct previous maps in this species. In total, 1,663 crossovers were detected, resulting in a map length span of 1604.8 cM. The marker density is 8.45 SRAPs per cM, and there could be more than one marker in 100 kb physical distance. There are four linkage groups in the A genome with more than 800 SRAP markers each, and three linkage groups in the C genome with more 1,000 SRAP markers each. Our studies suggest that a single SRAP map might be applicable to the three Brassica species, B. napus, B. oleracea and B. rapa. The use of this ultra high-density genetic recombination map in marker development and map-based gene cloning is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据