4.6 Article

P38 and ERK mitogen-activated protein kinases mediate acrolein-induced apoptosis in Chinese hamster ovary cells

期刊

CELLULAR SIGNALLING
卷 19, 期 5, 页码 968-977

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cellsig.2006.10.014

关键词

acrolein; apoptosis; caspase; MAPK; ASK1; AKT; p53; toxicity

向作者/读者索取更多资源

Acrolein, which is a highly reactive alpha,beta-unsaturated aldehyde generated by lipid peroxidation, can affect cells and tissues and cause various disorders. Increased levels of unsaturated aldehydes play an important role in the pathogenesis of a number of human diseases such as Alzheimer's disease, atherosclerosis and diabetes. Acrolein is a highly ubiquitous toxic environmental pollutant. Because of human exposure, there is a need for investigating the mechanisms involved in acrolein toxicity at the cellular and molecular levels. Acrolein can induce cell death by apoptosis, although the mechanisms are not entirely clear. The present study investigates whether mitogen-activated protein kinases (MAPKs) play a role in activation of apoptosis by acrolein. Our findings show that acrolein-mediated apoptosis is in fact MAPK-dependent in Chinese hamster ovary cells. The MAP family kinases, including ERK and p38 kinase, and the transcription factor c-Jun were all activated by phosphorylation after I h exposure to acrolein. Phosphorylation of ERK and p38 kinases and their blockade by an ERK inhibitor, U0126, or a p38 inhibitor, SB203580, respectively, suggested that activation of apoptosis by acrolein is ERK- and p38-dependent. Thus, blockade of ERK and p38 inhibited chromatin condensation, caspase-7 and -9 activation as well as ICAD cleavage induced by acrolein. JNK and AKT kinases seem to be implicated in survival pathways against acrolein insult, since their respective inhibitors, SP600125 and LY294002/Wortmannin switched the mode of cell death from apoptosis to total necrosis. Finally, acrolein induced phosphorylation of the pro-apoptotic factor p53 which is responsible for transcription of pro-apoptotic factors such as Bax and Fas ligand. These results provide new information demonstrating the implication of MAPKs and AKT in acrolein-induced apoptosis, and this information may be useful for understanding the pathogenesis of a number of tissue diseases and environmental toxicity in response to acrolein. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据