4.8 Article

Bexarotene (LGD1069, targretin), a selective retinoid X receptor agonist, prevents and reverses gemcitabine resistance in NSCLC cells by modulating gene amplification

期刊

CANCER RESEARCH
卷 67, 期 9, 页码 4425-4433

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-06-4495

关键词

-

类别

向作者/读者索取更多资源

Acquired drug resistance is a major obstacle in cancer therapy. As for many other drugs, this is also the case for gemcitabine, a nucleoside analogue with activity against nonsmall cell lung cancer (NSCLC). Here, we evaluate the ability of bexarotene to modulate the acquisition and maintenance of gemcitabine resistance in Calu3 NSCLC models. In the prevention model, Calu3 cells treated repeatedly with gemcitabine alone gradually developed resistance. However, with inclusion of bexarotene, the cells remained chemosensitive. RNA analysis showed a strong increase of rrm1 (ribonucleotide reductase MI) expression in the resistant cells (Calu3-GemR), a gene known to be involved in gemcitabine resistance. In addition, the expression of genes surrounding the chromosomal location of rrm1 was increased, suggesting that resistance was due to gene amplification at the chr11 p15.5 locus. Analysis of genomic DNA confirmed that the rrm1 gene copy number was increased over 10-fold. Correspondingly, fluorescence in situ hybridization analysis of metaphase chromosomes showed an intrachromosomal amplification of the rrm1 locus. In the therapeutic model, bexarotene gradually resensitized Calu3-GemR cells to gemcitabine, reaching parental drug sensitivity after 10 treatment cycles. This was associated with a loss in rrm1 amplification. Corresponding with the in vitro data, xenograft tumors generated from the resistant cells did not respond to gemcitabine but were growth inhibited when bexarotene was added to the cytotoxic agent. The data indicate that bexarotene can resensitize gemcitabine-resistant tumor cells by reversing gene amplification. This suggests that bexarotene may have clinical utility in cancers where drug resistance by gene amplification is a major obstacle to successful therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据