4.5 Article

Protein mobility and diffusive barriers in Escherichia coli:: consequences of osmotic stress

期刊

MOLECULAR MICROBIOLOGY
卷 64, 期 3, 页码 858-871

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1365-2958.2007.05705.x

关键词

-

向作者/读者索取更多资源

The effect of osmotic stress on the intracellular diffusion of proteins in Escherichia coli was studied, using a pulsed version of fluorescence recovery after photo-bleaching, pulsed-FRAP. This method employs sequences of laser pulses which only partly bleach the fluorophores in a cell. Because the cell size and geometry are taken into account, pulsed-FRAP enables to measure diffusion in very small cells of different shapes. We found that upon an osmotic upshock from 0.15 to 0.6 Osm, imposed by NaCl or sorbitol, the apparent intracellular diffusion (D) of mobile green fluorescent protein (GFP) decreased from 3.2 to 0.4 mu m(2) s(-1), whereas the membrane permeable glycerol had no effect. Exposing E. coli cells to higher osmolalities (> 0.6 Osm) led to compartmentalization of the GFP into discrete pools, from where the GFP could not escape. Although free diffusion through the cell was hindered, the mobility of GFP in these pools was still relatively high (D similar to 0.4 mu m(2) s(-1)). The presence of osmoprotectants restored the effect of osmotic stress on the protein mobility and apparent compartmentalization. Also, lowering the osmolality from 0.6 Osm back to 0.15 Osm restored the mobility of GFP. The implications of these findings in terms of heterogeneities and diffusive barriers inside the cell are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据