4.6 Article Proceedings Paper

Electrical detection of spin currents: The spin-current induced Hall effect (invited)

期刊

JOURNAL OF APPLIED PHYSICS
卷 101, 期 9, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2710794

关键词

-

向作者/读者索取更多资源

We demonstrate electrical detection of spin currents in metallic nanostructures. In a conductor with nonzero spin-orbit coupling, a spin current is predicted in a direction perpendicular to the applied electric field, giving rise to a spin Hall effect, where electrons with opposite spin orientations accumulate at opposite edges of the sample. Conversely, when a spin current is present, a charge imbalance is expected, following the Onsager reciprocal relations between spin and charge currents. We report direct electronic measurements of this effect in a lateral geometry by using a ferromagnetic electrode in combination with a tunnel barrier to inject a spin-polarized current in a paramagnetic conductor. We observe a laterally induced voltage in the latter that results from the conversion of the injected spin current into charge imbalance owing to the spin-orbit coupling. Such a voltage is proportional to the component of the injected spins that is perpendicular to the plane defined by the spin-current direction and the voltage probes. By using this technique in CoFe-Al2O3-Al devices, we determine the spin Hall conductivity of aluminum. (C) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据