4.4 Article

Meridional momentum flux and superrotation in the multiscale IPESD MJO model

期刊

JOURNAL OF THE ATMOSPHERIC SCIENCES
卷 64, 期 5, 页码 1636-1651

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JAS3908.1

关键词

-

向作者/读者索取更多资源

The derivation of the meridional momentum flux arising from a multiscale horizontal velocity field in the intraseasonal. planetary, equatorial synoptic-scale dynamics (IPESD) multiscale models of the equatorial troposphere is presented. It is shown that, because of the balance dynamics on the synoptic scales, the synoptic-scale component of the meridional momentum flux convergence must always vanish at the equator. Plausible Madden Julian oscillation (MJO) models arc presented along with their planetary-scale meridional momentum fluxes. These models are driven by synoptic-scale heating fluctuations that have vertical and meridional tilts. Irrespective of the sign of the synoptic-scale meridional momentum flux (direction of the tilts) in each of the four MJO examples, the zonal and vertical mean meridional momentum flux convergence from the planetary scales always drives westerly winds near the equator: this is the superrotation characteristic of actual MJOs. The concluding discussion demonstrates that equatorial superrotation occurs when the planetary flow due to the vertical upscale momentum flux from synoptic scales reinforces the horizontally convergent flow due to planetary-scale mean heating.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据