4.5 Article

X-chromosome linked inhibitor of apoptosis protein inhibits muscle proteolysis in insulin-deficient mice

期刊

GENE THERAPY
卷 14, 期 9, 页码 711-720

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.gt.3302927

关键词

muscle protein degradation; XIAP; diabetes mellitus; lentivirus; gene transfer; caspase-3

资金

  1. NIDDK NIH HHS [R01 DK062081, R21 DK62796, R01 DK062081-04, R21 DK062796] Funding Source: Medline

向作者/读者索取更多资源

Loss of muscle protein is a serious complication of catabolic diseases and contributes substantially to patients' morbidity and mortality. This muscle loss is mediated largely by the activation of the ubiquitin-proteasome system; however, caspase-3 catalyzes an initial step in this process by cleaving actomyosin into small protein fragments that are rapidly degraded by the proteasome-dependent proteolytic pathway. We hypothesized that X-chromosome linked inhibitor of apoptosis protein (XIAP), an endogenous caspase-3 inhibitor, would block this first step in the cleavage of actomyosin that would make XIAP a candidate for treating muscle wasting. To determine if XIAP could attenuate muscle protein degradation, we used a recombinant lentivirus (Len-XIAP) encoding the full-length human XIAP cDNA to express XIAP in vivo. In muscle of streptozotocin-treated insulin-deficient mice, total muscle protein degradation, caspase-3 activity, and myofibril destruction were increased while XIAP was decreased. Overexpression of XIAP in these mice attenuated the excessive muscle protein degradation. Increased proteasome activity, caspase-3 activity and myofibril protein breakdown were all reduced. The ability of XIAP to prevent the loss of muscle protein suggests that XIAP could be a therapeutic reagent for muscle atrophy in catabolic diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据