4.7 Article

Modulation of the purinergic P2X7 receptor attenuates lipopolysaccharide-mediated microglial activation and neuronal damage in inflamed brain

期刊

JOURNAL OF NEUROSCIENCE
卷 27, 期 18, 页码 4957-4968

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.5417-06.2007

关键词

P2X(7) receptor; lipopolysaccharide; microglia; inflammation; cytokines; oxidized ATP

向作者/读者索取更多资源

We investigated the involvement and roles of the ionotropic purinergic receptor P2X(7)R in microglia in mediating lipopolysaccharide (LPS)-induced inflammatory responses and neuronal damage in rat striatum. A detailed in vivo study showed that LPS injection into striatum markedly increased the expression of P2X(7)R in microglia compared with control (saline)-injected animals. Additionally, LPS injection upregulated a broad spectrum of proinflammatory mediators, including inducible nitric oxide synthase (nitric oxide production marker), 3-nitrotyrosine (peroxynitrite-mediated nitration marker), 4-hydroxynonenal (lipid peroxidation marker), and 8-hydroxy-2'-deoxyguanosine (oxidative DNA damage marker), and reduced neuronal viability. The P2X(7)R antagonist oxidized ATP (oxATP) was effective in attenuating expressions of all inflammatory mediators and in addition inhibited LPS-induced activation of the cellular signaling factors p38 mitogen-activated protein kinase and transcriptional factor nuclear factor kappa B. Most importantly, in vivo, oxATP blockade of P2X(7)R also reduced numbers of caspase-3-positive neurons and increased neuronal survival in LPS-injected brain. In vitro, LPS stimulation of cultured human microglia enhanced cellular expressions of a host of proinflammatory factors, including cyclooxygenase-2, interleukin-1 beta(IL-1 beta), IL-6, IL-12, and tumor necrosis factor-alpha; all factors were inhibited by oxATP. A novel finding was that LPS potentiated intracellular [Ca2+](i) mobilization induced by the P2X(7)R ligand 2',3'-O-(4-benzoyl-benzoyl) ATP, which could serve as a mechanistic link for P2X(7)R amplification of inflammatory responses. Our results suggest critical roles for P2X(7)R in mediating inflammation and inhibition of this subtype purinergic receptor as a novel therapeutic approach to reduce microglial activation and confer neuroprotection in inflamed and diseased brain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据