4.8 Article

The neural EGF family member CALEB/NGC mediates dendritic tree and spine complexity

期刊

EMBO JOURNAL
卷 26, 期 9, 页码 2371-2386

出版社

WILEY
DOI: 10.1038/sj.emboj.7601680

关键词

CALEB; dendrite branching; in utero electroporation; PI3K-Akt-mTOR signaling; spine morphogenesis

向作者/读者索取更多资源

The development of dendritic arborizations and spines is essential for neuronal information processing, and abnormal dendritic structures and/or alterations in spine morphology are consistent features of neurons in patients with mental retardation. We identify the neural EGF family member CALEB/NGC as a critical mediator of dendritic tree complexity and spine formation. Overexpression of CALEB/NGC enhances dendritic branching and increases the complexity of dendritic spines and filopodia. Genetic and functional inactivation of CALEB/NGC impairs dendritic arborization and spine formation. Genetic manipulations of individual neurons in an otherwise unaffected microenvironment in the intact mouse cortex by in utero electroporation confirm these results. The EGF-like domain of CALEB/NGC drives both dendritic branching and spine morphogenesis. The phosphatidylinositide 3-kinase (PI3K) Akt-mammalian target of rapamycin (mTOR) signaling pathway and protein kinase C (PKC) are important for CALEB/NGC- induced stimulation of dendritic branching. In contrast, CALEB/NGC-induced spine morphogenesis is independent of PI3K but depends on PKC. Thus, our findings reveal a novel switch of specificity in signaling leading to neuronal process differentiation in consecutive developmental events.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据