4.6 Article

Loss of phylloquinone in Chlamydomonas affects plastoquinone pool size and photosystem II synthesis

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 282, 期 18, 页码 13250-13263

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M610249200

关键词

-

向作者/读者索取更多资源

Phylloquinone functions as the electron transfer cofactor at the A(1) site of photosystem I. We have isolated and characterized a mutant of Chlamydomonas reinhardtii, menD1, that is deficient in MenD, which encodes 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase, an enzyme that catalyzes the first specific step of the phylloquinone biosynthetic pathway. The mutant is photosynthetically active but light-sensitive. Analysis of total pigments by mass spectrometry reveals that phylloquinone is absent in menD1, but plastoquinone levels are not affected. This is further confirmed by the rescue of menD1 by addition of phylloquinone to the growth medium. Analysis of electron transfer by absorption spectroscopy indicates that plastoquinone replaces phylloquinone in photosystem I and that electron transfer from A1 to the iron-sulfur centers is slowed down at least 40-fold. Consistent with a replacement of phylloquinone by plastoquinone, the size of the free plastoquinone pool of menD1 is reduced by 20-30%. In contrast to cyanobacterial MenD-deficient mutants, photosystem I accumulates normally in menD1, whereas the level of photosystem II declines. This decrease is because of reduced synthesis of the photosystem II core subunits. The relationship between plastoquinone occupancy of the A(1) site in photosystem I and the reduced accumulation of photosystem II is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据