4.6 Article

Phosphodiesterase 2A forms a complex with the co-chaperone XAP2 and regulates nuclear translocation of the aryl hydrocarbon receptor

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 282, 期 18, 页码 13656-13663

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M610942200

关键词

-

向作者/读者索取更多资源

Phosphodiesterase type 2A (PDE2A) hydrolyzes cyclic nucleotides cAMP and cGMP, thus efficiently controlling cAMP-dependent signaling pathways. PDE2A is composed of an amino-terminal region, two regulatory GAF domains, and a catalytic domain. Cyclic nucleotide hydrolysis is known to be activated by cGMP binding to GAF-B; however, other mechanisms may operate to fine-tune local cyclic nucleotide levels. In a yeast two-hybrid screening we identified XAP2, a crucial component of the aryl hydrocarbon receptor (AhR) complex, as a major PDE2A-interacting protein. We mapped the XAP2 binding site to the GAF-B domain of PDE2A. PDE assays with purified proteins showed that XAP2 binding does not change the enzymatic activity of PDE2A. To analyze whether PDE2A could affect the function of XAP2, we studied nuclear translocation of AhR, i.e. the master transcription factor controlling the expression of multiple detoxification genes. Notably, regulation of AhR target gene expression is initiated by tetrachlorodibenzodioxin (TCDD) binding to AhR and by a poorly understood cAMP-dependent pathway followed by the translocation of AhR from the cytosol into the nucleus. Binding of PDE2A to XAP2 inhibited TCDD- and cAMP-induced nuclear translocation of AhR in Hepa1c1c7 hepatocytes. Furthermore, PDE2A attenuated TCDD- induced transcription in reporter gene assays. We conclude that XAP2 targets PDE2A to the AhR complex, thereby restricting AhR mobility, possibly by a local reduction of cAMP levels. Our results provide first insights into the elusive cAMP-dependent regulation of AhR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据