4.6 Article

Quantification of β+ activity generated by hard photons by means of PET

期刊

PHYSICS IN MEDICINE AND BIOLOGY
卷 52, 期 9, 页码 2515-2530

出版社

IOP Publishing Ltd
DOI: 10.1088/0031-9155/52/9/012

关键词

-

向作者/读者索取更多资源

Positron emission tomography (PET) as a method for quality assurance in radiotherapy is well investigated in the case of therapy with carbon ion beams and successfully applied at the Heavy Ion Medical Accelerator at Chiba (HIMAC), Japan, and the Gesellschaft fur Schwerionenforschung (GSI), Germany. By measuring the beta(+) activity distribution during the irradiation (in-beam PET), valuable information on the precision of the dose deposition can be obtained. To extend this efficient technique to other radiation treatment modalities may be worthwhile. For example, since positron emitters are generated by high-energy photons with energies above 20 MeV due to (gamma, n) reactions (predominantly C-11 and O-15 in tissue), in-beam PET seems to be feasible for radiation therapy with high- energy photons as also shown in Geant4 simulations. Quantitative results on the activation of tissue-equivalent materials at hard photon beams were obtained by performing off-beam PET experiments. Homogeneous PMMA phantoms as well as inhomogeneous phantoms were irradiated with high-energy bremsstrahlung. After the irradiation the distributions of the generated positron emitters in the phantoms were measured using a conventional PET scanner. Furthermore, the depth-dose distributions were determined by means of optically stimulated luminescence detectors. In the experiments an activity per dose comparable to that produced in a typical patient irradiation with carbon ions could be achieved for 34 MV bremsstrahlung. In addition, a high contrast in the PET images for materials with different density and stoichiometry could be detected.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据