4.8 Article

Depolarization effects in self-assembled monolayers: A quantum-chemical insight

向作者/读者索取更多资源

Many recent experimental studies have demonstrated that the deposition of a self-assembled monolayer (SAM) made of polar molecules on a metal surface can significantly modulate its work function and hence the barrier for hole and electron injection in optoelectronic devices. The permanent dipole moment associated with the backbone of the molecules plays a key role in defining the amplitude and direction of the work-function shift. We illustrate here via quantum-chemical calculations performed on model systems that the dipole moment of molecules is significantly reduced going from the isolated state to the SAM. Such depolarization. effects that are most often neglected thus reduce the work-function shift and have to be taken in account to control and understand charge-injection barriers in devices at a quantitative level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据