4.7 Article

Quantum chemistry calculations for molecules coupled to reservoirs: Formalism, implementation, and application to benzenedithiol

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 126, 期 17, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2716664

关键词

-

向作者/读者索取更多资源

Modern quantum chemistry calculations are usually implemented for isolated systems-big molecules or atom clusters; total energy and particle number are fixed. However, in many situations, like quantum transport calculations or molecules in a electrochemical environment, the molecule can exchange particles (and energy) with a reservoir. Calculations for such cases require to switch from the canonical to a grand canonical description, where one fixes the chemical potential rather than particle number. To achieve this goal, the authors propose an implementation in standard quantum chemistry packages. An application to the nonlinear charge transport through 1,4-benzenedithiol will be presented. They explain the leading finite bias effect on the transmission as a consequence of a nonequilibrium Stark effect and discuss the relation to earlier work. (C) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据