4.8 Article

Parasite-intrinsic factors can explain ordered progression of trypanosome antigenic variation

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0606206104

关键词

mathematical model; Typanosoma brucei; variant surface glycoprotein; switching; hierarchy

资金

  1. Wellcome Trust [055558] Funding Source: Medline

向作者/读者索取更多资源

Pathogens often persist during infection because of antigenic variation in which they evade immunity by switching between distinct surface antigen variants. A central question is how ordered appearance of variants, an important determinant of chronicity, is achieved. Theories suggest that it results directly from a complex pattern of transition connectivity between variants or indirectly from effects such as immune cross-reactivity or differential variant growth rates. Using a mathematical model based only on known infection variables, we show that order in trypanosome infections can be explained more parsimoniously by a simpler combination of two key parasite-intrinsic factors: differential activation rates of parasite variant surface glycoprotein (VSG) genes and density-dependent parasite differentiation. The model outcomes concur with empirical evidence that several variants are expressed simultaneously and that parasitaemia peaks correlate with VSG genes within distinct activation probability groups. Our findings provide a possible explanation for the enormity of the recently sequenced VSG silent archive and have important implications for field transmission.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据