4.6 Article

Formation studies and controlled production of carbon nanohorns using continuous in situ characterization techniques

期刊

NANOTECHNOLOGY
卷 18, 期 18, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/18/18/185604

关键词

-

向作者/读者索取更多资源

The formation of carbon nanohorns by laser ablation was investigated using a scanning differential mobility analyzer combined with an ultrafine condensation particle counter. The measurement technique provided time-resolved size distributions for the carbon nanoparticles every minute during the course of the production run. The instrument performance was reasonably stable most of the time; however, during laser ablation, shockwave oscillations leading to significant transient flow and pressure variations were shown to disrupt the DMAs ability to measure accurate distributions. On the basis of the general trend observed in the data taken during the laser-ablation experiments, we found that the geometric mean diameter of the produced population shifted to larger particle sizes with increases in pulse width. For a given laser peak power and repetition rate, carbon nanoparticles of mobility diameter close to 100 nm were produced in a large abundance using longer laser pulse lengths ( e. g., 10 ms) as compared to the shorter pulse lengths ( e. g., 1 ms). A quantitative assessment of the particle size dispersion ( using statistics like the geometric standard deviation) in relation to the laser pulse width could not be done with certainty as the shockwave disturbances produced by the laser-ablation process caused significant disruption to SMPS measurements. When laser ablation was not in operation, it was found that carbon nanoparticles with mobility diameters centred at about 20 nm could be produced by thermally desorbing the previously deposited carbon nanoparticles from the reactor wall at temperatures greater than 1300 K.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据