4.6 Article

Molecular dynamics modeling of ion adsorption to the basal surfaces of kaolinite

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 111, 期 18, 页码 6753-6762

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp065687+

关键词

-

向作者/读者索取更多资源

Molecular dynamics simulation is used to study the mechanisms involved in the adsorption of various ions to the basal surfaces of kaolinite. Analysis of simulation data indicates that cations and anions adsorb preferably on the siloxane and gibbsite surfaces of kaolinite, respectively. Strong inner-sphere adsorption of chlorine at aluminum vacancies on the gibbsite surface and the occurrence of chlorine-driven inner-sphere adsorption of cesium and sodium on the gibbsite surface for high ionic strengths are observed. Cesium ions form strong inner-sphere complexes at ditrigonal cavities on the siloxane surface. Outer-sphere cesium is highly mobile and only weak adsorption may occur. A small amount of sodium adsorbs on the siloxane surface as inner-sphere complexes at less clearly defined sites. Like cesium, sodium only forms very weak outer-sphere complexes on this surface. Inner-sphere complexes of cadmium and lead do not occur on either surface. Relatively strong outer-sphere cadmium and lead complexes are present on the siloxane surface at ditrigonal cavities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据