4.7 Article

Interpolating moving least-squares methods for fitting potential energy surfaces: Computing high-density potential energy surface data from low-density ab initio data points

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 126, 期 18, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2730798

关键词

-

向作者/读者索取更多资源

A highly accurate and efficient method for molecular global potential energy surface (PES) construction and fitting is demonstrated. An interpolating-moving-least-squares (IMLS)-based method is developed using low-density ab initio Hessian values to compute high-density PES parameters suitable for accurate and efficient PES representation. The method is automated and flexible so that a PES can be optimally generated for classical trajectories, spectroscopy, or other applications. Two important bottlenecks for fitting PESs are addressed. First, high accuracy is obtained using a minimal density of ab initio points, thus overcoming the bottleneck of ab initio point generation faced in applications of modified-Shepard-based methods. Second, high efficiency is also possible (suitable when a huge number of potential energy and gradient evaluations are required during a trajectory calculation). This overcomes the bottleneck in high-order IMLS-based methods, i.e., the high cost/accuracy ratio for potential energy evaluations. The result is a set of hybrid IMLS methods in which high-order IMLS is used with low-density ab initio Hessian data to compute a dense grid of points at which the energy, Hessian, or even high-order IMLS fitting parameters are stored. A series of hybrid methods is then possible as these data can be used for neural network fitting, modified-Shepard interpolation, or approximate IMLS. Results that are indicative of the accuracy, efficiency, and scalability are presented for one-dimensional model potentials as well as for three-dimensional (HCN) and six-dimensional (HOOH) molecular PESs. (c) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据