4.8 Article

Laccase-mediated michael addition of 15N-sulfapyridine to a model humic constituent

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 41, 期 10, 页码 3593-3600

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es0617338

关键词

-

向作者/读者索取更多资源

Chemical incorporation of sulfonamide antimicrobials into natural organic matter may represent an important process influencing the fate of these synthetic, primarily agents in soil and sediment environments. We previously demonstrated that a fungal peroxidase mediates covalent coupling of sulfonamide antimicrobials to model humic constituents; reactions with the 2,6-dimethoxyphenol syringic acid produced Schiff bases (Bialk et al. Environ. Sci. Technol. 2005, 39, 4436-4473). Here, we show that fungal laccase-mediated reaction of sulfapyridine with the ortho-dihydroxyphenol protocatechuic acid yields a Michael adduct. We synthesized N-15-enriched sulfapyridine to facilitate determination of the covalent linkage(s) formed between sulfapyridine and protocatechuic acid by NMR spectroscopy. H-1-N-15 heteronuclear multiple bond correlation experiments and tandem mass spectrometry demonstrated that the sulfapyridine anilinic nitrogen engaged in a Michael addition reaction to oxidized protocatechuic acid to form an anilinoquinone. Michael adducts are more stable than the previously reported imine linkages between sulfonamides and 2,6-dimethoxyphenols. Michael addition to quinone-like structures in soil organic matter is expected to diminish the mobility and biological activity of sulfonamide antimicrobials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据