4.8 Article

APEx 2-hybrid, a quantitative protein-protein interaction assay for antibody discovery and engineering

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0702650104

关键词

FACS; high-throughout screening; antibody engineering; Fab

资金

  1. NIAID NIH HHS [U01 AI056431, U01 AI56431] Funding Source: Medline

向作者/读者索取更多资源

We have developed a bacterial system for the discovery of interacting proteins that, unlike other two-hybrid technologies, allows for the selection of protein pairs on the basis of affinity or expression. This technology relies on the anchored periplasmic expression (APEx) of one protein (bait) on the periplasmic side of the inner membrane of Escherichia coli and its interacting partner (prey) as a soluble, epitope-tagged, periplasmic protein. Upon removal of the outer membrane by spheroplasting, periplasmic proteins, including any unbound epitope-tagged prey, are released into the extracellular fluid. However, if the epitope-tagged prey can bind to the membrane-anchored bait, it remains associated with the cell and can be detected quantitatively by using fluorescent anti-epitope tag antibodies. Cells expressing prey:bait pairs exhibiting different affinities can be readily distinguished by flow cytometry. The utility of this technology, called APEx two-hybrid, was demonstrated in two demanding antibody engineering applications: First, single-chain variable fragment (scFvs) with increased affinity to the protective antigen of Bacillus anthracis were isolated from cells coexpressing libraries of scFv random mutants, together with endogenously expressed antigen. Second, APEx two-hybrid coupled with multicolor FACS analysis to account for protein expression was used for the selection of mutant Fab antibody fragments exhibiting improved expression in the bacterial periplasm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据