4.6 Article

Site-specific proteolysis of cyclooxygenase-2:: A putative step in inflammatory prostaglandin E2 biosynthesis

期刊

JOURNAL OF CELLULAR BIOCHEMISTRY
卷 101, 期 2, 页码 425-441

出版社

WILEY-LISS
DOI: 10.1002/jcb.21191

关键词

cyclooxygenase-2; post-translational regulation; proteolysis; proteomics; proinflammatory cytokines; primary human cells

向作者/读者索取更多资源

Cyclooxygenase-2 (COX-2) catalyzes the rate-limiting step in inflammatory prostanoid biosynthesis. Transcriptional, post-transcriptional, and post-translational covalent modifications have been defined as important levels of regulation for COX-2 gene expression. Here, we describe a novel regulatory mechanism in primary human cells involving regulated, sequence-specific proteolysis of COX-2 that correlates with its catalytic activity and ultimately, the biosynthesis of prostaglandin E-2 (PGE(2)). Proinflammatory cytokines induced COX-2 expression and its proteolysis into stable immunoreactive fragments of 66, 42-44, 34-36, and 28 kDa. Increased COX-2 activity (PGE2 release) was observed coincident with the timing and degree of COX-2 proteolysis with correlation analysis confirming a linear relationship (R-2 = 0.941). Inhibition of induced COX-2 activity with non-steroidal anti-inflammatory drugs (NSAIDs) and COX-2 selective inhibitors also abrogated cleavage. To determine if NSAID inhibition of proteolysis was related to drug-binding-induced conformational changes in COX-2, we assayed COX-inactive NSAID derivatives that fail to bind COX-2. Interestingly, these compounds suppressed COX-2 activity and cleavage in a correlated manner, thus suggesting that the observed NSAID-induced inhibition of COX-2 cleavage occurred through COX-independent mechanisms, presumably through the inhibition of proteases involved in COX-2 processing. Corroborating this observation, COX-2 cleavage and activity were mutually suppressed by calpain/cathepsin protease inhibitors. Our data suggest that the nascent intracellular form of COX-2 may undergo limited proteolysis to attain full catalytic capacity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据