4.6 Article

The cell division cycle puts up with unprotected telomeres - Cell cycle regulated telomere uncapping as a means to achieve telomere homeostasis

期刊

CELL CYCLE
卷 6, 期 10, 页码 1161-1167

出版社

LANDES BIOSCIENCE
DOI: 10.4161/cc.6.10.4224

关键词

telomeres; CDK1; chromosome capping; cell cycle; exonucleases; genome instability

向作者/读者索取更多资源

Telomeres have unique properties that distinguish natural chromosomal ends from accidental DNA double-strand interruptions arising elsewhere in the genome. However, the slightest perturbation in their unique organization may obliterate this distinction, channelling chromosomal ends into unwarranted repair events, eventually causing genome instability. Recent results revealed that the processing of both dysfunctional telomeres and accidental DNA double strand breaks (DSB) by DNA repair activities is tightly regulated in a cell cycle-dependent manner by the S phase-promoting cell cycle kinase CDK1 (Clb-Cdc28p). Surprisingly, the cell cycle determinants and the timing of processing at unprotected telomeres closely match the requirements of other transactions that occur at telomeres. In particular, the replenishment of telomeric repeats by telomerase is tightly linked to cell cycle progression and occurs in the same interval. Furthermore, cell survival in the absence of essential telomeric proteins being dependent on telomere-telomere recombination mechanisms may require a similar regulation. Thus, a temporally limited state of telomere dysfunction leading to chromosome end processing may represent a well-governed cell cycle event that constitutes an integral part of the assembly of a new functional telomere.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据