4.8 Article

Light activation of an innate olfactory avoidance response in Drosophila

期刊

CURRENT BIOLOGY
卷 17, 期 10, 页码 905-908

出版社

CELL PRESS
DOI: 10.1016/j.cub.2007.04.046

关键词

-

向作者/读者索取更多资源

How specific sensory stimuli evoke specific behaviors is a fundamental problem in neurobiology. In Drosophila, most odorants elicit attraction or avoidance depending on their concentration, as well as their identity [1]. Such odorants, moreover, typically activate combinations of glomeruli in the antennal lobe of the brain [2-4], complicating the dissection of the circuits translating odor recognition into behavior. Carbon dioxide (CO2), in contrast, elicits avoidance over a wide range of concentrations [5, 6] and activates only a single glomerulus, V [5]. The V glomerulus receives projections from olfactory receptor neurons (ORNs) that coexpress two GPCRs, Gr21a and Gr63a, that together comprise a CO2 receptor [7-9]. These CO2-sensitive ORNs, located in the abl sensilla of the antenna, are called ab1c neurons [10]. Genetic silencing of ab1c neurons indicates that they are necessary for CO2-avoidance behavior [5]. Whether activation of these neurons alone is sufficient to elicit this behavior, or whether CO2 avoidance requires additional inputs (e.g., from the respiratory system), remains unclear. Here, we show that artificial stimulation of ab1c neurons with light (normally attractive to flies) elicits the avoidance behavior typical of CO2. Thus, avoidance behavior appears hardwired into the olfactory circuitry that detects CO2 in Drosophila.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据