4.6 Article

Band alignment at the ZrO2/Si(100) interface studied by photoelectron and x-ray absorption spectroscopy

期刊

JOURNAL OF APPLIED PHYSICS
卷 101, 期 10, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2738402

关键词

-

向作者/读者索取更多资源

We present measurements of the Zr and Si core level photoelectron binding energies relative to the Fermi level and the vacuum level under a ZrO2 growth series on Si(100). It is shown that the Zr core level binding energy is most properly referenced to the local vacuum level already from the monolayer regime. This confirms the insulating properties of ZrO2. The Si core levels are referenced to the Fermi level and undergo shifts consistent with the disappearance of the mid-band-gap states originating from the (2x1) reconstruction on the clean Si(100) surface. The use of O 1s x-ray absorption spectroscopy (XAS) to determine the location of the conduction band edge of ZrO2 is discussed with the aid of ab initio calculations. It is demonstrated that the conduction band edge is located at the XAS peak position and that the position relative to the valence band can be determined by aligning the O 1s XAS spectrum to the O 1s photoelectron spectrum. The study thus establishes that photoelectron spectroscopy in conjunction with x-ray absorption spectroscopy forms a most powerful tool for studies of the band alignment at metal oxide-silicon interfaces. (c) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据