4.5 Article

Conformational preferences and cis-trans isomerization of azaproline residue

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 111, 期 19, 页码 5377-5385

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp067826t

关键词

-

向作者/读者索取更多资源

The conformational study of N-acetyl-N'-methylamide of azaproline (Ac-azPro-NHMe, the azPro dipeptide) is carried out using ab initio HF and density functional methods with the self-consistent reaction field method to explore the effects of the replacement of the backbone CH alpha group by the nitrogen atom on the conformational preferences and prolyl cis-trans isomerization in the gas phase and in solution (chloroform and water). The incorporation of the N-alpha atom into the prolyl ring results in the different puckering, backbone population, and barriers to prolyl cis-trans isomerization from those of Ac-Pro-NHMe (the Pro dipeptide). In particular, the azPro dipeptide has a dominant backbone conformation D (beta(2)) with the cis peptide bond preceding the azPro residue in both the gas phase and solution. This may be ascribed to the favorable electrostatic interaction or intramolecular hydrogen bond between the prolyl nitrogen and the amide hydrogen following the azPro residue and to the absence of the unfavorable interactions between electron lone pairs of the acetyl carbonyl oxygen and the prolyl N-alpha. This calculated higher population of the cis peptide bond is consistent with the results from X-ray and NMR experiments. As the solvent polarity increases, the conformations B and B* with the trans peptide bond become more populated and the cis population decreases more, which is opposite to the results for the Pro dipeptide. The conformation B lies between conformations D and A (alpha) and conformation B* is a mirror image of the conformation B on the phi-psi map. The barriers to prolyl cis-trans isomerization for the azPro dipeptide increase with the increase of solvent polarity, and the cis-trans isomerization proceeds through only the clockwise rotation with omega' approximate to +120 degrees about the prolyl peptide bond for the azPro dipeptide in the gas phase and in solution, as seen for the Pro dipeptide. The pertinent distance d(N center dot center dot center dot H-N-NHMe) and the pyramidality of imide nitrogen can describe the role of this hydrogen bond in stabilizing the transition state structure and the lower rotational barriers for the azPro dipeptide than those for the Pro dipeptide in the gas phase and in solution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据