4.6 Article

The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles

期刊

JOURNAL OF PHYSICS D-APPLIED PHYSICS
卷 40, 期 10, 页码 3164-3171

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/40/10/020

关键词

-

向作者/读者索取更多资源

Nanofluids, which are produced by dispersing nanoparticles into conventional fluids, exhibit anomalously high thermal conductivity. Most experiments demonstrated that the nanolayer surrounding the solid particles and the clusters formed by nanoparticles' aggregation may play an important role in the enhancement of thermal conductivity of nanofluids. By taking into account the nanolayer and nanoparticles' aggregation, a new model for the effective thermal conductivities of nanofluids is proposed. This model is expressed as a function of the thickness of the nanolayer, the nanoparticle size, the nanoparticle volume fraction and the thermal conductivities of suspended nanoparticles and base fluid. The theoretical predictions on the effective thermal conductivities of nanofluids are shown to be in good agreement with the available experimental data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据