4.6 Article

Nanostructured copper phthalocyanine-sensitized multiwall carbon nanotube films

期刊

LANGMUIR
卷 23, 期 11, 页码 6424-6430

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la070156d

关键词

-

资金

  1. Engineering and Physical Sciences Research Council [EP/E500293/1] Funding Source: researchfish

向作者/读者索取更多资源

We report a detailed study of the interaction between surface-oxidized multiwall carbon nanotubes (o-MWCNTs) and the molecular semiconductor tetrasulfonate copper phthalocyanine (TS-CuPc). Concentrated dispersions of o-MWCNT in aqueous solutions of TS-CuPc are stable toward nanotube flocculation and exhibit spontaneous nanostructuring upon rapid drying. In addition to hydrogen-bonding interactions, the compatibility between the two components is shown to result from a ground-state charge-transfer interaction with partial charge transfer from o-MWCNT to TS-CuPc molecules orientated such that the plane of the macrocycle is parallel to the nanotube surface. The electronegativity of TS-CuPc as compared to unsubsubtituted copper phthalocyanine is shown to result from the electron-withdrawing character of the sulfonate substituents, which increase the molecular ionization potential and promote cofacial molecular aggregation upon drying. Upon spin casting to form uniform thin films, the experimental evidence is consistent with an o-MWCNT scaffold decorated with phthalocyanine molecules self-assembled into extended aggregates reminiscent of 1-D linearly stacked phthalocyanine polymers. Remarkably, this self-organization occurs in a fraction of a second during the spin-coating process. To demonstrate the potential utility of this hybrid material, it is successfully incorporated into a model organic photovoltaic cell at the interface between a poly(3-hexylthiophene):[6,6]-phenyl-C-61 butyric acid methyl ester bulk heterojunction layer and an indium-tin oxide-coated glass electrode to increase the light-harvesting capability of the device and facilitate hole extraction. The resulting enhancement in power conversion efficiency is rationalized in terms of the electronic, optical, and morphological properties of the nanostructured thin film.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据