4.8 Article

Polymerization kinetics of ADP- and ADP-Pi-actin determined by fluorescence microscopy

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0702510104

关键词

filaments; rate constant; treadmilling

资金

  1. NIGMS NIH HHS [R01 GM026338, GM026338] Funding Source: Medline

向作者/读者索取更多资源

We used fluorescence microscopy to determine how polymerization of Mg-ADP-actin depends on the concentration of phosphate. From the dependence of the elongation rate on the actin concentration and direct observations of depolymerizing filaments, we measured the polymerization rate constants of ADP-actin and ADP-Pi-actin. Saturating phosphate reduces the critical concentration for polymerization of Mg-ADP-actin from 1.8 to 0.06 mu M almost entirely by reducing the dissociation rate constants at both ends. Saturating phosphate increases the barbed end association rate constant of Mg-ADP-actin 15%, but this value is still threefold less than that of ATP-actin. Thus, ATP hydrolysis without phosphate dissociation must change the conformation of polymerized actin. Analysis of depolymerization experiments in the presence of phosphate suggests that phosphate dissociation near the terminal subunits is much faster than in the interior. Remarkably, 10 times more phosphate is required to slow the depolymerization of the pointed end than the barbed end, suggesting a weak affinity of phosphate near the pointed end. Our observations of single actin filaments provide clues about the origins of the difference in the critical concentration at the two ends of actin filaments in the presence of ATP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据